-->

Belajar Logaritma 2013



1.  Jika 2log x = 3
     Tentukan nilai x = ….
            Jawab:
            2log x = 3  à x = 23
                                     x = 8.

2.  Jika 4log 64 = x
     Tentukan nilai x = ….
            Jawab:
            4log 64 = x  à 4x = 64
                                        4x = 44
                            x = 4.

3.  Nilai dari 2log 8 + 3log 9 = ….
            Jawab:
            = 2log 8 + 3log 9
            = 2log 23 + 3log 32
            =  3 + 2
            =  5

4.  Nilai dari 2log (8 x 16) = ….
            Jawab:
            = 2log 8 + 2log 16
            = 2log 23 + 2log 24
            =  3 + 4
            =  7

5.  Nilai dari 3log (81 : 27) = ….
            Jawab:
            = 3log 81 - 3log 27
            = 3log 34 - 3log 33
            =  4 - 3
            =  1

6.  Nilai dari 2log 84 = ….
            Jawab:
            = 2log 84
            = 4 x 2log 23
            = 4 x 3
            = 12

7.  Nilai dari 2log Ö84 = ….
            Jawab:
            = 2log Ö84  à
            = 2 x 2log 23
            = 2 x 3
            = 6

8.      Jika log 100 = x
Tentukan nilai x = ….
                        Jawab:
                        log 100 = x  à 10x = 100
                                    10x =  102
                                   x = 2.


9.      log 3 = 0,477 dan log 2 = 0,301
Nilai log 18 = ….
log 3 = 0,477 dan log 2 = 0,301
log 18 = log 9 x 2
                        = log 9 + log 2
                        = log 32 + log 2
                        = 2 (0,477) + 0,301
                        = 0,954 + 0,301
                        = 1,255 

10.  log 2 = 0,301 dan log 5 = 0,699
Nilai log 5 + log 8 + log 25 = ….
log 2 = 0,301 dan log 5 = 0,699
= log 5 + log 8 + log 25
            = log 5 + log 23 + log 52
= log 5 + 3.log 2 + 2.log 5
= 0,699 + 3(0,301) + 2(0,699)
= 0,699 + 0,903 + 1,398
= 3,0

11.      Tentukan nilai dari :
(a). log 1000          dan      (b).2 log 128

Penyelesaian :
(a). Misalkan log 1000 = y
log 1000 = 10  log 1000 = 10log103 = y
103 = 10y         (definisi)
 y = 3

(b). Misalkan 2log 128  = x
          2log 128 = 2log 27 = x
       27 = 2x
       x = 7

12.      Tentukanlah atau hitunglah nilai dari
(a) log 234                         (b). log 23,4                 (c). log 2,34
(d). log 0,234                     (e). log 0,000234
Penyelesaian :
(a). log 234 = log (2,34 x 102) = log 2,34 + log 102 = log 2,34 + 2
Dengan memperhatikan atau membaca logaritma biasa, nilai log 2,34 berada pada baris yang dikepalai oleh 23 dan di bawah kolom yang dikepalai oleh 4. Hal ini berarti log 2,34 = 0,369. Jadi, log 234 = 0,369 + 2 = 2,369.
Catatan :
Bilangan 0,369 disebut mantisa (bagian desimal) dan 2 disebut karakteristik(bagian bulat). Dalam hal ini mantisa logaritma tidak pernah negatif, tetapi 0 mantisa < 1.
(b). log 23,4 = log (2,34 x 101) = log 2,34 + log 10 = log 2,34 + 1 = 0,369 + 1 = 1,369.
(c). log 2,34 = 0,369
(d). log 0,000234 = log (2,34 x 10-4) = log 2,34 + log 10-4 = 0,369 - 4 = -3,631.

13.      Tentukanlah x jika
(a). log x = 4,483               (b). log x = 2,483                     (c). log x = 0,483
(d). log x = - 2,483                         (e). log x = -4,483

Penyelesaian :
(a). log x = 4,483 menurut definisi x = 104,483 = 100,483+4 = 104 x 100,483
Untuk menghitung 100,483 , kita harus menemukan bilangan yang logaritmanya 0,483.

Dari tabel (daftar) ternyata 0,483 terdapat pada baris yang dikepalai oleh 30 dan pada kolom yang dikepalai 4, bilangan ini adalah 3, 04. (ingat 1 A < 10). Jadi,
x = 104 x 3,04 = 30400.
(b). Karena log x = 2,483, maka menurut definisi x = 102,483 = 102 + 0,483 = 102 + 100,483. Dengan memperhatikan daftar logaritma, seperti penyelesaian soal di atas (a), maka didapat :
x = 102 x 3,04 = 304.
(c). log x = 0,483 berarti x = 100,483 = 3,04.
(d). Karena log x = - 2,483 tidak dalam bentuk baku, maka bentuk bakunya
log x = -2,483 = 0,517 + (-3).
Dari daftar logaritma diperoleh antilog 0,517 = 3,29. Jadi,
x = 3,29 x 10-3 = 0,00329.
(e). log x = -4,483 = 0,517 + (-5),
sedangkan dari daftar logaritma diperoleh antilog 0,517 = 3,29. Jadi,
x = 3,29 x 10-5 = 0,0000329.

14.      Carilah 3 log 2 dengan bantuan daftar logaritma.

15.      Jika log x = 0,602, tentukanlah nilai logaritma berikut :
(a). log 4000                      (b). log 0,04                 (c). Log 16

No comments:

Post a Comment

Kebijakan berkomentar akan dihapus, jika tidak sesuai dengan aturan dibawah ini, Demi kenyamanan kita bersama :

» Menggunakan bahasa yang tidak sopan (Sara, Pornografi, Menyinggung)
» Duplikat komentar
» Komentar menautkan link secara langsung
» Komentar tidak berkaitan dengan artikel
» Judul Komentar Berupa Promosi

Bila Anda punya nama atau blog gunakan komentar sebagai "Name/ URL".

Sebelumnya vito minta maaf yg sebesar"nya jika komentar anda belum sempat dibales. ^^

Followers

Lagi Naik Daun